5,697 research outputs found

    Laser extensometer

    Get PDF
    A drift compensated and intensity averaged extensometer for measuring the diameter or other properties of a substantially cylindrical sample based upon the shadow of the sample is described. A beam of laser light is shaped to provide a beam with a uniform intensity along an axis normal to the sample. After passing the sample, the portion of the beam not striking said sample is divided by a beam splitter into a reference signal and a measurement signal. Both of these beams are then chopped by a light chopper to fall upon two photodiode detectors. The resulting ac currents are rectified and then divided into one another, with the final output being proportional to the size of the sample shadow

    Formation of small-scale structure in SUSY CDM

    Get PDF
    The lightest supersymmetric particle, most likely the lightest neutralino, is one of the most prominent particle candidates for cold dark matter (CDM). We show that the primordial spectrum of density fluctuations in neutralino CDM has a sharp cut-off, induced by two different damping mechanisms. During the kinetic decoupling of neutralinos, non-equilibrium processes constitute viscosity effects, which damp or even absorb density perturbations in CDM. After the last scattering of neutralinos, free streaming induces neutralino flows from overdense to underdense regions of space. Both damping mechanisms together define a minimal mass scale for perturbations in neutralino CDM, before the inhomogeneities enter the nonlinear epoch of structure formation. We find that the very first gravitationally bound neutralino clouds ought to have masses above 10^{-6} solar masses, which is six orders of magnitude above the mass of possible axion miniclusters.Comment: 7 pages, 3 figures, to appear in proceedings of "IDM 2002, 4th International Workshop on the Identification of Dark Matter

    Genuine lab experiences for students in resource constrained environments: The RealLab with integrated intelligent assessment.

    Get PDF
    Laboratory activities are indispensable for developing engineering skills. Computer Aided Learning (CAL) tools can be used to enhance laboratory learning in various ways, the latest approach being the virtual laboratory technique that emulates traditional laboratory processes. This new approach makes it possible to give students complete and genuine laboratory experiences in situations constrained by limited resources in the provision of laboratory facilities and infrastructure and/or where there is need for laboratory education, for large classes, with only one laboratory stand. This may especially be the case in countries in transition. Most existing virtual laboratories are not available for purchase. Where they are, they may not be cost friendly for resource constrained environments. Also, most do not integrate any form of assessment structure. In this paper, we present a very cost friendly virtual laboratory solution for genuine laboratory experiences in resource constrained environments, with integrated intelligent assessment

    Determination of the SSME high pressure oxidizer turbopump bearing temperature

    Get PDF
    The SSME high pressure liquid oxygen turbopump (HPOTP) bearings sometimes wear and experience heating and oxidation of the ball and raceway surfaces. So far it has been impossible to measure the temperature of the bearings directly during operation of the turbopumps. However, a method was developed for determining the surface temperature of the bearings from the composition of the oxides using oxidation samples for calibration and Auger Electron Spectroscopy (AES) for chemical analysis

    Baroclinic geostrophic adjustment in a rotating circular basin

    Get PDF
    Baroclinic geostrophic adjustment in a rotating circular basin is investigated in a laboratory study. The adjustment process consists of a linear phase before advective and dissipative effects dominate the response for longer time. This work describes in detail the hydrodynamics and energetics of the linear phase of the adjustment process of a two-layer fluid from an initial step height discontinuity in the density interface DeltaH to a final response consisting of both geostrophic and fluctuating components. For a forcing lengthscale r(f) equal to the basin radius R-0, the geostrophic component takes the form of a basin-scale double gyre while the fluctuating component is composed of baroclinic Kelvin and Poincare waves. The Burger number S=R/r(f) (R is the baroclinic Rossby radius of deformation) and the dimensionless forcing amplitude epsilon = DeltaH/H-1 (H-1 is the upper-layer depth) characterize the response of the adjustment process. In particular, comparisons between analytical solutions and laboratory measurements indicate that for time tau: 1 < tau < S-1 (tau is time scaled by the inertial period 2pi/f), the basin-scale double gyre is established, followed by a period where the double gyre is sustained, given by S-1 < tau < 2epsilon(-1) for a moderate forcing and S-1 < tau < tau(D) for a weak forcing (tau(D) is the dimensionless dissipation timescale due to Ekman damping). The analytical solution is used to calculate the energetics of the baroclinic geostrophic adjustment. The results are found to compare well with previous studies with partitioning of energy between the geostrophic and fluctuating components exhibiting a strong dependence on S. Finally, the outcomes of this study are considered in terms of their application to lakes influenced by the rotation of the Earth

    The non-Abelian feature of parton energy loss in energy dependence of jet quenching in high-energy heavy-ion collisions

    Full text link
    One of the non-Abelian features of parton energy loss is the ratio ΔEg/ΔEq=9/4\Delta E_g/\Delta E_q=9/4 between gluon and quark jets. Since jet production rate is dominated by quark jets at high xT=2pT/sx_T=2p_T/\sqrt{s} and by gluon jets at low xTx_T, high pTp_T hadron suppression in high-energy heavy-ion collisions should reflect such a non-Abelian feature. Within a leading order perturbative QCD parton model that incorporates transverse expansion and Woods-Saxon nuclear distribution, the energy dependence of large pT∌5−20p_T\sim 5-20 GeV/cc hadron suppression is found to be sensitive to the non-Abelian feasture of parton energy loss and could be tested by data from low energy runs at RHIC or data from LHC.Comment: RevTex 4, 7 pages, 3 figure

    An investigation into linearity with cumulative emissions of the climate and carbon cycle response in HadCM3LC

    Get PDF
    We investigate the extent to which global mean temperature, precipitation, and the carbon cycle are constrained by cumulative carbon emissions throughout four experiments with a fully coupled climate-carbon cycle model. The two paired experiments adopt contrasting, idealised approaches to climate change mitigation at different action points this century, with total emissions exceeding two trillion tonnes of carbon in the later pair. Their initially diverging cumulative emissions trajectories cross after several decades, before diverging again. We find that their global mean temperatures are, to first order, linear with cumulative emissions, though regional differences in temperature of up to 1.5K exist when cumulative emissions of each pair coincide. Interestingly, although the oceanic precipitation response scales with cumulative emissions, the global precipitation response does not, due to a decrease in precipitation over land above cumulative emissions of around one trillion tonnes of carbon (TtC). Most carbon fluxes and stores are less well constrained by cumulative emissions as they reach two trillion tonnes. The opposing mitigation approaches have different consequences for the Amazon rainforest, which affects the linearity with which the carbon cycle responds to cumulative emissions. Averaged over the two fixed-emissions experiments, the transient response to cumulative carbon emissions (TCRE) is 1.95 K TtC-1, at the upper end of the IPCC’s range of 0.8-2.5 K TtC-1

    Resource Patch Formation and Exploitation throughout the Marine Microbial Food Web

    Full text link
    Exploitation of microscale (?m?mm) resource patches by planktonic microorganisms may influence oceanic trophodynamics and nutrient cycling. However, examinations of microbial behavior within patchy microhabitats have been precluded by methodological limitations. We developed a microfluidic device to generate microscale resource patches at environmentally realistic spatiotemporal scales, and we examined the exploitation of these patches by marine microorganisms. We studied the foraging response of three sequential levels of the microbial food web: a phytoplankton (Dunaliella tertiolecta), a heterotrophic bacterium (Pseudoalteromonas haloplanktis), and a phagotrophic protist (Neobodo designis). Population-level chemotactic responses and single-cell swimming behaviors were quantified. Dunaliella tertiolecta accumulated within a patch of , simulating a zooplankton excretion, within 1 min of its formation. Pseudoalteromonas haloplanktis cells also exhibited a chemotactic response to patches of D. tertiolecta exudates within 30 s, whereas N. designis shifted swimming behavior in response to bacterial prey patches. Although they relied on different swimming strategies, all three organisms exhibited behaviors that permitted efficient and rapid exploitation of resource patches. These observations imply that microscale nutrient patchiness may subsequently trigger the sequential formation of patches of phytoplankton, heterotrophic bacteria, and protozoan predators in the ocean. Enhanced uptake and predation rates driven by patch exploitation could accelerate carbon flux through the microbial loop

    Intermittent convection, mixed boundary conditions and the stability of the thermohaline circulation

    Get PDF
    Intermittent convection and its consequences on the stability of the thermohaline circulation are investigated with an oceanic global circulation model (OGCM) and simple box models. A two-box model shows that intermittency is a consequence of the non-linearity of the equation of state and of the ratio of heat and freshwater fluxes at surface versus the fluxes at depth. Moreover, it only occurs in areas, where the instability of the water column is caused by temperature or by salinity. Intermittency is not necessarily suppressed by long restoring times. Because intermittent convection causes temporal variations of the ocean-atmosphere fluxes, an OGCM cannot reach an exact equilibrium. After a switch to mixed boundary conditions, changes of the convective activity occur in areas where intermittency is observed. Intermittent convection becomes either continuous or is stopped depending on the method used for calculating the freshwater fluxes. Advective and diffusive fluxes between these regions and their surroundings change in order to balance the altered convective fluxes. A comparison between the OGCM and a six-box model illustrates that this may lead to an alteration of adjacent deep convection and of the related deep water formation
    • 

    corecore